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Abstract. We study the Dirichlet dynamical zeta function ηD(s)
for billiard flow corresponding to several strictly convex disjoint
obstacles. For large Re s we have ηD(s) =

∑∞
n=1 ane

−λns, an ∈ R
and ηD admits a meromorphic continuation to C. We obtain some
conditions of the frequencies λn and some sums of coefficients an
which imply that ηD cannot be prolonged as entire function.

1. Introduction

Let D1, . . . , Dr ⊂ Rd, r > 3, d > 2, be compact strictly convex dis-
joint obstacles with C∞ smooth boundary and let D =

⋃r
j=1Dj. We

assume that every Dj has non-empty interior and throughout this pa-
per we suppose the following non-eclipse condition

Dk ∩ convex hull (Di ∪Dj) = ∅, (1.1)

for any 1 6 i, j, k 6 r such that i 6= k and j 6= k. Under this condition
all periodic trajectories for the billiard flow in Ω = Rd \ D̊ are ordinary
reflecting ones without tangential intersections to the boundary of D.
We consider the (non-grazing) billiard flow ϕt (see [Pet, Section 2] for
the definition). Next the periodic trajectories will be called periodic
rays. For any periodic ray γ, denote by τ(γ) > 0 its period, by τ ](γ) >
0 its primitive period, and by m(γ) the number of reflections of γ at
the obstacles. Denote by Pγ the associated linearized Poincaré map
(see [PS17, Section 2.3] for the definition).

Let P be the set of all oriented periodic rays. The counting function
of the lengths of primitive periodic rays Π satisfies

]{γ ∈ Π : τ ](γ) 6 x} ∼ ehx

hx
, x→ +∞, (1.2)

for some h > 0 (see for instance, [PP90, Theorem 6.5] for weak-mixing
suspension symbolic flows). Thus there exists an infinite number of
primitive periodic trajectories and for every small ε > 0 we have the
estimate

e(h−ε)x ≤ ]{γ ∈ P : τ(γ) 6 x} 6 e(h+ε)x, x > Cε. (1.3)
1
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Moreover, for some positive constants C1, d1, d2 we have (see for in-
stance [Pet99, Appendix])

C1e
d1τ(γ) 6 | det(Id− Pγ)| 6 ed2τ(γ), γ ∈ P . (1.4)

By using these estimates, we define for Re(s) � 1 the Dirichlet dy-
namical zeta function ηD(s) by

ηD(s) =
∑
γ∈P

(−1)m(γ) τ ](γ)e−sτ(γ)

| det(Id− Pγ)|1/2
,

where the sums run over all oriented periodic rays. This zeta func-
tion is important for the analysis of the distribution of the scattering
resonances related to the Laplacian in Rd \ D̄ with Dirichlet bound-
ary conditions on ∂D (see [CP22, §1] for more details). Denote by
σa ∈ R, σc ∈ R the abscissa of absolute convergence and the abscissa
of convergence of ηD, respectively.

It was proved in [CP22, Theorem 1 and Theorem 4] that ηD admits a
meromorphic continuation to C with simple poles and integer residues.
On the other hand, for d = 2 [Sto01] and for d > 3 under some condi-
tions [Sto12] Stoyanov proved that there exists ε > 0 such that ηD(s)
is analytic for Re s > σa − ε.

There is a conjecture that ηD cannot be prolonged as entire func-
tion. This conjecture was established for obstacles with real analytic
boundary (see [CP22, Theorem 3]) and for obstacles with sufficiently
small diameters [Ika90b], [Sto09] and C∞ smooth boundary. If ηD(s)
is not an entire function, then we obtain two important corollaries:

(i) ηD has infinite number of poles in some strip {z ∈ C : Re z ≥ β}
(see [Pet, Section 3] for a lower bound of the counting function of poles),

(ii) The modified Lax-Phillips conjecture (MLPC) for scattering res-
onances introduced by Ikawa [Ika90a] holds. (MLPC) says that there
exists a strip {z ∈ C : 0 < Im z ≤ α} containing an infinite number
of scattering resonances for Dirichlet Laplacian in Rd \ D̄ (see [CP22,
Section 1] for definitions and more precise results).

Let ρ ∈ C∞0 (R;R+) be an even function with supp ρ ⊂ [−1, 1] such
that ρ(t) > 1 if |t| 6 1/2.

Let (`j)j∈N and (mj)j∈N be sequences of positive numbers such that
`j > d0 = mink 6=m dist (Dk, Dm) > 0, mj > max{1, 1

d0
} and let `j →

∞, mj → ∞ as j → ∞. Set ρj(t) = ρ(mj(t − `j)), t ∈ R, and
introduce the distribution FD(t) ∈ S ′(R+) by

FD(t) =
∑
γ∈P

(−1)m(γ)τ ](γ)δ(t− τ(γ))

| det(I − Pγ)|1/2
.
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We have the following

Proposition 1.1. The function ηD(s) cannot be prolonged as an entire
function of s if and only if there exists α0 > 0 such that for any β > α0

we can find sequences (`j), (mj) with `j ↗ ∞ as j → ∞ such that for
all j > 0 one has eβ`j 6 mj 6 e2β`j and

|〈FD, ρj〉| > e−α0`j . (1.5)

More precisely, if ηD cannot be prolonged as entire function, the
existence of sequences (`j), (mj) with the above properties has been
proved by Ikawa [Ika90a, Prop.2.3], while in the proof of Theorem 1.1
in [Pet] it was established that if such sequences exist, the function ηD
has an infinite number of poles.

The conditions of Proposition 1.1 are difficult to verify. The purpose
of this Note is to find another conditions which imply that ηD cannot
be prolonged as entire function. For this purpose we exploit the local
trace formula (see [Pet, Theorem 2.1]) and the summability by typical
means of Dirichlet series introduced by Hardy and Riesz [HR64] (see
also [DS22, Section 2]). It is convenient to write ηD(s) as a Dirichlet
series

ηD(s) =
∞∑
n=1

ane
−λns, Re s� 1, (1.6)

where the frequencies are arranged as follows

0 < λ1 < λ2 < ... < λn < ...

and

an =
∑

γ∈P,τ(γ)=λn

(−1)m(γ)τ ](γ)

| det(Id− Pγ)|1/2
. (1.7)

Our main result is the following

Theorem 1.1. Suppose σc < 0. Assume that there exist constants
C > 0, δ > h + 1, −γ < σc and an increasing sequence mj ↗∞ such
that

λmj
− λmj−1 ≥ Ce−δλmj , (1.8)

|
∑
n≥mj

an| ≥ e−γλmj . (1.9)

Then ηD(s) cannot be prolonged as entire function.

The condition σc < 0 is not a restriction since if σc ≥ 0, the Dirichlet
series

ηD(s+ σc + 1) =
∑
n

(ane
−λn(σc+1))e−λns =

∑
n

bne
−λns
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is convergent for Re s > −1, hence it has a negative abscissa of con-
vergence σb and ηD(s + σc + 1) is entire if and only if ηD(s) is entire.
Moreover, in the proof of Theorem 1.1 (see section 3), assuming ηD
entire, one has the property

∀A < σc, ∃CA > 0, |ηD(s)| ≤ CA(1 + | Im s|), Re s ≥ A

which is satisfied also for ηD(s + σc + 1) with another constants BA.
Thus we may apply Theorem 1.1 if instead of (1.9) one has the estimate

|
∑
n≥mj

bn| ≥ e−γ1λmj , −γ1 < σb. (1.10)

The assumptions on λn and an in Theorem 1.1 are satisfied if Bohr
condition (see for instance, [DS22, §3.13])

(BC) ∃C1 > 0, ∃` > 0, ∀n > 0, λn+1 − λn ≥ C1e
−`λn

holds. Indeed, it is well known that in the case σc < 0, one has the
representation

σc = lim sup
n→∞

log |
∑

n≥m an|
λm

.

For small ε > 0 this implies the existence of a sequence mj ↗∞ such
that

|
∑
n≥mj

an ≥ e(σc−ε)λmj

and we obtain (1.9) with −γ = σc − ε.
The condition (BC) is very restrictive. The advantage of Theorem

1.1 is that (1.8) is always satisfied (see Section 3) for infinite number of
frequencies λmj−1, λmj

and the separation by e−δλj of some frequencies
λmj

only on the left is less restrictive than a separation of all frequencies
on both sides. Applying Theorem 1.1, we obtain the following

Corollary 1.1. Suppose σc < 0. Then if

lim inf
m→∞

log |
∑

n≥m an|
λm

> −∞, (1.11)

the function ηD(s) cannot be prolonged as entire function.

In Section 4 for δ > h + 2 we construct intervals I(λk, δ) ⊂ [b, b +
1], b ≥ b0 with clustering frequencies and we obtain Corollary 4.1. We
have infinite number of such intervals. Moreover, under some geomet-
rical assumptions described in [PS12, Section 8] the number of such
intervals is exponentially increasing when b → ∞. Finally, assuming
that the coefficients an have a lower bound (4.4), we show that for ev-
ery interval I(λk, δ) we have 4 possibilities concerning the behaviour of
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the corresponding sums. For 3 of these 4 possibilities it is possible to
find frequencies satisfying (1.8), (1.9) (see Proposition 4.1).

The paper is organised as follows. In Section 2 we recall the lo-
cal trace formula for ηD. Assuming ηD entire, we deduce the estimates
(2.3). This makes possible to prove that that the abscissa of k− summa-
bility σk of ηD is −∞. In Section 3 we prove Theorem 1.1. Section 4
is devoted to intervals I(λk, δ) with clustering frequencies and the con-
structions of frequencies satisfying (1.8) and (1.9).

2. Summation by typical means of ηD

In this section we apply the results of [DG16], [JT25, §6.1] and [Pet]
for vector bundles. For our exposition we need only the local trace
formula containing the poles of the meromorphic continuation of cut
off resolvents 1Ṽu(−iPk,` − s)−11Ṽu of some operators

−iPk,`,q, 0 ≤ k ≤ d, 0 ≤ ` ≤ d2 − d, q = 1, 2.

Here Ṽu us a neighborhood of the trapping set K̃u. The precise defini-
tions of Pk,`,q, K̃u and the corresponding setting are complicated and
they are not necessary for the analysis below and we prefer to refer to
[Pet, Section 2] for the corresponding definitions and details. Denote
by Res (−iPk,`,q) the set of the poles of the meromorphic continuation
of the corresponding cut off resolvents.

For every A > 0 and any 0 < ε� 1 we have the following local trace
formula (see [Pet, Theorem 2.1])

d∑
k=0

d2−d∑
`=0

∑
µ∈Res (−iPk,`,2),Imµ>−A

(−1)k+`e−iµt

−
d∑

k=0

d2−d∑
`=0

∑
µ∈Res (−iPk,`,1),Imµ>−A

(−1)k+`e−iµt (2.1)

+FA(t) = FD(t), t > 0.

Here FA(t) ∈ S ′(R) is supported in (0,∞), the Laplace-Fourier trans-

form F̂A(λ) of FA(t) is holomorphic for Imλ < A− ε and satisfies the
estimate

|F̂A(λ)| = OA,ε(1 + |λ|)2d2+2d−1+ε, Imλ < A− ε. (2.2)

Notice that the poles in Res (−iPk,`,q) are simples with positive in-
teger residues [CP22, Theorem 1]. For the sums with fixed q the can-
cellations in (2.1) could appear only between the terms with k+ ` odd
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and k + ` even. On the other hand, taking the difference of sums with
q = 2 and q = 1 we obtain more cancelations.

If the following we assume that ηD can be a prolonged as entire
function. In particular,

ηD(−iλ) = 〈FD, eitλ〉 =
∑
γ∈P

(−1)m(γ)τ ](γ)eiλτ(γ)

| det(Id−Pγ)|1/2
, Imλ ≥ C � 1

admits an analytic continuation for Imλ < C. For fixed A > 0 the
function ηD(−iλ) has no poles µ with Imµ > −A and in (2.1) all
terms involving poles will be canceled. Consequently, from (2.1) we
obtain

ηD(−iλ) = F̂A(−λ), Imλ > −A+ ε.

Setting −iλ = s = σ + it, σ ∈ R, t ∈ R, this implies

|ηD(s)| ≤ CA(1 + |s|)2d2+2d−1 ≤ BA(1 + |t|)2d2+2d−1, σ ≥ −A+ ε. (2.3)

Here we used the fact that |ηD(s)| is bounded for σ ≥ C0 > 0 with
sufficiently large C0 > 0 and |s| ≤ max{A,C0}+ |t| for −A ≤ σ ≤ C0.
We may apply the above argument for every A > 0, so the bound (2.3)
holds for every A > 0 with constants BA depending of A. The crucial
point is that the power 2d2 + 2d− 1 is independent of A.

Applying the Phragmént- Lindelöf principle for entire function ηD(s)
in the strip

{z ∈ C : −A+ ε ≤ Re z ≤ C0},
one deduces

|ηD(σ + it)| ≤ Dσ,A(1 + |t|)κ(σ), −A+ ε ≤ σ ≤ C0

with

κ(σ) =
C0 − σ

C0 + A− ε
(2d2 + 2d− 1), −A+ ε ≤ σ ≤ C0.

For fixed σ, taking A sufficiently large we obtain for every small 0 <
ν � 1 the estimate

|ηD(σ + it)| ≤ Bσ,ν(1 + |t|)ν , σ ≤ C0. (2.4)

Next we recall the summation by typical means of Dirichlet series
(see [HR64, Section IV, §2], [DS22, Section 2] for more details). For
k > 0 consider

Ck
λ(u) =

∑
λn<u

(u− λn)kane
−λns.

We say that the series
∑∞

n=1 ane
−λns is (λ, k) summable if

lim
u→∞

Ck
λ(u)

uk
= C.
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There exists a number σk such that the series is (λ, k) summable for
σ > σk and not (λ, k) summable for σ < σk (see [HR64, Theorem
26]).The number σk is called abscissa of k- summability of the series.
We will apply the following

Theorem 2.1 (Theorem 41, [HR64]). Suppose that the series f(s) =∑∞
n=1 ane

−λns admits an analytic continuation for σ > η. Suppose fur-
ther that k and k′ are positive numbers such that k′ < k and for all
small δ we have

|f(s)| ≤ Cδ(1 + |s|)k′

uniformly for σ ≥ η + δ > η. Then f(s) is (λ, k) summable for σ > η.

In fact, the above theorem in [HR64] is given without proof. The
reader may consult Corollary 3.8 and Corollary 3.9 in [DS22] for a proof
and other results related to Theorem 2.1 and (λ, k) summability. The
estimates (2.4) combined with Theorem 2.1 imply the following

Proposition 2.1. If ηD(s) can be prolonged as entire function, for
every k > 0 the Dirichlet series (1.6) has abscissa of k−summability
σk = −∞.

3. Proof of Theorem 1.1

Throughout this section we assume that ηD(s) can be prolonged as
entire function. Choose δ > h+ 2. First, it is easy to see that in every
interval [b, b + 1], b ≥ b0 � 1 we have subintervals [α, β] ⊂ [b + b + 1]
of length greater than e−δb which does not contain frequencies. It is
sufficient to write [b, b + 1] as an union of eδb intervals of length e−δb

and to use the bounds (1.3).
We have the following simple

Lemma 3.1. Fix a small 0 < ε < 1/2. There exists b0 ≥ max{3/h, 1}
depending of ε so that for α ≥ b0 we have

]{γ ∈ Π : α ≤ τ ](γ) ≤ α + ε} > ε(1− η)eαh

3(α + ε)
. (3.1)

Proof. Choose 0 < η < ε so that 4η ≤ εh
3(1+ε)

. For x ≥ b0(η) � 1 the

asymptotics (1.2), imply the estimates

ehx

hx
(1− η) ≤ ]{γ ∈ Π : τ ](γ) ≤ x} ≤ ehx

hx
(1 + η).

Therefore for α ≥ b0(η) we obtain

]{γ ∈ Π : α ≤ τ ](γ) ≤ α + ε} ≥ eh(α+ε)

h(α + ε)
(1− η)− ehα

hα
(1 + η)
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>
(1− η)eαh

h(α + ε)

[
1 + εh− (α + ε)(1 + η)

α(1− η)

]
.

On the other hand, we have 1
α
≤ h

3
and

4η ≤ εh

3(1 + ε)
≤ εh

3(1 + ε
α

)
.

Then

(α + ε)(1 + η)

α(1− η)
=
(

1 +
ε

α

)(
1 +

2η

1− η

)
≤ (1 +

ε

α
)(1 + 4η) ≤ 1 +

2εh

3

and one deduces (3.1). �

Proof of Theorem 1.1. We start with the formula for the abscissa of
k−summability σk < 0 in the case when k ∈ N is an integer established
by Kuniyeda [Kun16, Theorem E]. More precisely, we have

σk = lim sup
u→∞

log |Rk(u)|
uk

, (3.2)

where Rk(u) =
∑

λn>u
an(λn − u)k. We are interesting of the case

k = 1. Let δ, γ be the constants given in (1.8), (1.9), respectively.
By Proposition 2.1, for ηD(s) we have σ1 = −∞. We fix γ1 > 0 so that
−γ1 < −δ+γ−1. Then (3.2) implies that there exists M = M(γ1) > 1
such that

|R(u)| = |
∑
λn>u

an(λn − u)| ≤ e−γ1u, ∀u ≥M.

Let

λmj
− λmj−1 ≥ Ce−δλmj , λmj−2 ≥M, |

∑
n≥mj

an| ≥ eγλmj .

Obviously, for M large by using (3.1), we get λmj
− λmj−1 < 1.

Choose umj−1, umj
so that λmj−2 < umj−1 < λmj−1 < umj

< λmj
and

write

R(umj−1)−R(umj
) = amj−1(λmj−1− umj−1) + (umj

− umj−1)
∑

λn>umj

an.

We choose λmj−1 − umj−1 = εj � 1 sufficiently small to arrange

|amj−1|(λmj−1 − umj−1) ≤ e−γ1λmj .

(Exploiting (1.4), we obtain an upper bound |an| ≤ ecλn , ∀n with c > 0
independent of λn, but this is not necessary for the estimation above.)
Next

umj
− umj−1 = (umj

− λmj
) + (λmj

− λmj−1) + (λmj−1 − umj−1).
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Taking εj very close to 0, if it is necessary, we choose umj
= λmj

− εj,
and deduce

umj
− umj−1 = λmj

− λmj−1 ≥ Ce−δλmj .

Then
Ce(−δ+γ)λmj ≤ (umj

− umj−1)|
∑
n≥mj

an|

= |R(umj−1)−R(umj
)− amj−1(λmj−1 − umj−1)|

≤ e−γ1umj−1 + e−γ1umj + e−γ1λmj

≤
(

2eγ1(λmj−umj−1) + 1
)
e−γ1λmj .

Since
λmj
− umj−1 = λmj

− λmj−1 + εj < 3/2,

the above inequality yields

1 ≤ 1

C

(
2e

3
2
γ1 + 1

)
e(−γ1+δ−γ)λmj

and we obtain a contradiction for λmj
→∞. This completes the proof.

Since (1.8) is always satisfied for suitable frequencies λmj−1, λmj
(see

Section 4), exploiting (1.11), we may arrange the condition (1.9) for
λmj

large enough. An application of Theorem 1.1 yields Corollary 1.1.

4. Intervals with clustering frequencies

We fix δ > h + 2 and e−b < ε � 1/2 and consider an interval
[b, b + 1], b ≥ b0(ε). Let λk ∈ [b + e−b, b + 1 − e−b]. To examine the
clustering around λk, we construct some sets. Introduce

Jδ(µ) = (µ, µ+ e−δb).

If λk+1 /∈ Jδ(λk), we stop the construction on the right. If λk+1 ∈
Jδ(λk), one considers Jδ(λk+1). In the case λk+2 /∈ Jδ(λk+1), we stop the
construction. Otherwise, we continue with Jδ(λk+2) up to the situation
when λk+q+1 /∈ Jδ(λk+q). It is clear that such q exists.We repeat the
same construction moving on the left introducing

Gδ(µ) = (µ− e−δb, µ).

We stop when λk−p−1 /∈ Gδ(λk−p). Set I(λk, δ) = [λk−p, λk+q]. The
integers p, q depend on λk, but we omit this in the notations below.
Clearly, if we take another frequency λk′ ∈ I(λk, δ), we obtain by the
above construction the same interval. It is not excluded that I(λk, δ) =
{λk}. In the particular case, one has q = p = 0. The number of the
frequencies in I(λk, δ) is bounded by e(h+ε)(b+1) and

λk+q − λk−p ≤ e(h−δ+ε)b+(h+ε) < e−b, b ≥ b0(ε). (4.1)
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This estimate implies λk+q < b + 1, λk−p > b, so I(λk, δ) ⊂ (b, b + 1).
By Lemma 3.1, the intervals without frequencies have lengths less than
ε. Let M(ε, δ, b) be the number of the sets

I(λk, δ)∪(λk+q, λk+q+1), e
−δb ≤ λk+q+1−λk+q < ε, λk ∈ [b+e−b, b+1−e−b].

Taking the union of such sets, we obtain

M(ε, δ, b)(ε+ e−b) ≥ 1− 2ε− 2e−b.

For large b thus implies

M(ε, δ, b) >
1− 2ε− 2e−b

ε+ e−b
=

1

ε
− 2 +Oε(e−b). (4.2)

Hence we have at least
[
1
ε

]
− 2 frequencies λmj

∈ [b+ e−b, b+ 1− e−b]
with

λmj−pj −λmj−pj−1 > e−δλmj−pj−1 , λmj+qj+1−λmj+qj > e−δλmj+qj , (4.3)

where [a] denotes the entire part of a.
Now let γ � 1 be fixed. Given an interval I(λk, δ) ⊂ (b, b + 1), we

have 2 possibilities:

(i) |
∑
n≥k−p

an| ≥ e−γλk−p , (ii) |
∑
n≥k−p

an| < e−γλk−p .

In the case (i) the conditions (1.8), (1.9) are satisfied for λk−p−1 and
λk−p. If one has (ii), and |

∑
n≥k+q+1 an| < e−γλk+q+1 , by triangle in-

equality one deduces

|
k+q∑

n=k−p

an| ≤ e−γλk−p + e−γλk+q+1 < 2e−γλk−p .

Thus if (ii) holds, and |
∑k+q

n=k−p an| ≥ 2e−γλk−p the conditions (1.8),

(1.9) are satisfied for λk+q and λk+q+1. Taking into account (4.3) and
applying Theorem 1.1, we obtain the following

Corollary 4.1. Suppose σc < 0. Suppose that there exist constants
δ > h+ 2, γ � 1 and a sequence of intervals

I(λmj
, δ) = [λmj−pj , λmj+qj ], λmj

↗∞
satisfying (4.3) such that

|
mj+qj∑

n=mj−pj

an| ≥ 2e−γλmj−pj .

Then ηD cannot be prolonged as entire function.
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It is important to increase the number of intervals included in [b, b+1]
satisfying (4.3). By using Lemma 3.1, we see that for ε ↘ 0 we have
b0(ε) ↗ ∞ so a more precise asymptotics for the counting functions
of the number of frequencies with remainder is necessary. Under some
geometrical assumptions, it was proved (see [PS12, Theorem 4]) that
we may replace ε by e−µb with small 0 < µ < h and obtain a lower
bound of

]{γ ∈ Π : α ≤ τ ](γ) ≤ α + e−µb}.
These assumptions are satisfied for d = 2, while for d ≥ 3 one make
some restrictions. We refer to [PS12, Section 8] for precise results and
more details. Under these assumptions we obtain M(e−µb, δ, b) ∼ eµb as
b→∞ so the number of intervals satisfying (4.3) increase exponentially
as b→ +∞. The issue is that the possibilities to satisfy the conditions
of Theorem 1.1 increase exponentially, too.

To obtain a lower bound for |an|, ∀n ≥ n0, introduce the condition
(L) There exist constants c1 > 0, c2 > 0, independent of n such that

|an| ≥ c1e
−c2λn , ∀n ≥ n0. (4.4)

The condition (4.4) holds in the case when the lengths of primitive
periodic rays γ ∈ Π are rationally independent, because (1.7) will
contain only one term and from (1.4) one deduces (4.4) with c1 =
mini 6=j dist (Di, Dj) and c2 = d2/2. This rationally independence has
been proved for generic domains (see [PS17, Theorem 6.2.3]). Then if
(L) holds and

|
∑
k≥m

ak| < e−γλm , |
∑

k≥m+1

ak| < e−γλm+1 (4.5)

with γ > c2 + 1, one has c1e
−c2λm ≤ |am| < 2e−γλm which is impossible

for large λm. Hence at least one of the estimates (4.5) does not hold.
Going back to intervals I(λk, δ), notice that for λk+q one has also 2

possibilities:

(iii) |
∑
n≥k+q

an| ≥ e−γλk+q , (iv) |
∑
n≥k+q

an| < e−γλk+q .

Assuming (L) and γ > c2+1, in the case (iv) the conditions (1.8), (1.9)
are satisfied for λk+q and λk+q+1. Consequently, we obtain the following

Proposition 4.1. Assume (L) satisfied and γ > c2 + 1. Then for
every interval I(λk, δ) we have 4 possibilities: (i)−(iii), (i)−(iv), (ii)−
(iii), (ii) − (iv). If (i) holds, or if we have (ii) − (vi), we may find an
interval [λk−p−1, λk−p] or [λk+q, λk+q+1] satisfying (1.8) and (1.9).
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A more fine analysis of the estimates of the sums |
∑kj+qj

n=kj−pj an|
should imply more precise results.
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